The eRHIC project

Thomas Burton
Brookhaven National Lab
International Conference on Frontiers in Physics

The eRHIC project

- BNL's proposal for an Electron-ion-collider
- Next-gen facility for nucle(on/ar) structure
 - Extreme luminosity
 - Variable beam energies
 - Multiple ion species: p to U
 - Polarised beams

Probing hadrons: DIS

- Photon interacts with quark not proton
- Clean probe of nucleon

$$\sigma_r = F_2(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x, Q^2)$$

Proton structure

- Describable with structure functions
- Relate to parton distribution functions
 - parton momentum inside proton

Fraction of proton momentum

1: Spin physics

Allows study of nucleon spin What do we currently know?

Not from 3 spin ½ quarks

- Not from 3 spin ½ quarks
- Only ½ from quark spin
- Remainder unclear

- Not from 3 spin ½ quarks
- Only ½ from quark spin
- Remainder unclear
 - How much gluon spin?
 - How much orbital motion?

- Not from 3 spin ½ quarks
- Only ½ from quark spin
- Remainder unclear
 - How much gluon spin?
 - How much orbital motion?

- What is the impact of eRHIC?
 - Perform global fit of existing data + eRHIC "data"

Integral over $x \rightarrow spin$ from gluons

eRHIC kinematics

Variable E

→ scan
x-Q² plane

Greatly extended reach to both low x & high Q²

2: Imaging

Deeply Virtual Compton Scattering

Fourier transform **GPDs** → **transverse spatial distribution: 3D imaging**

Deeply Virtual Compton Scattering

Existing PEHA: daya luminosity gives precision & fine binning

Nucleon tomography

2+1D imaging of the nucleon

3: Strong colour fields

Nuclear diffraction

Sensitive to Saturation

Can't rise forever

 At some point density so high

balanced by

"Saturation"

Exclusive Vector Meson Production

$$e + A \rightarrow e' + A' + VM$$

- Nuclei are an ideal laboratory for saturation
 - higher g density

Detector

Summary

- eRHIC will provide
 - A broad, compelling physics programme
 - Much more than discussed here!
 - A state of the art detector
 - A cost-effective route to an EIC

Sensitive to Saturation

- Not from 3 spin ½ quarks
- Only ½ from quark spin
- Remainder unclear
 - How much gluon spin?
 - How much orbital motion?

Proton spin

Nuclear structure

$$\sigma_r^{DIS} = F_2(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x, Q^2)$$

- F_L: nuclear gluon distribution
 - nuclear wavefunction
- Requires variable energy

Hadron imaging

$$\sigma_r \approx F_2(x,Q^2)$$

- F_2 , F_L : "structure functions"
 - F2 senstive to quark and (indirectly) gluon distributions.
 - Parton Distribution
 Functions f(x, Q²)
 - Well-measured by HERA
 - FL directly sensitive to gluon distribution

